Satisfiability Modulo Finite Fields

نویسندگان

چکیده

Abstract We study satisfiability modulo the theory of finite fields and give a decision procedure for this theory. implement our prime inside cvc5 SMT solver. Using theory, we construct queries that encode translation validation various zero knowledge proof compilers applied to Boolean computations. evaluate on these benchmarks. Our experiments show implementation is superior previous approaches (which field arithmetic using integers or bit-vectors).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Propositional Satisfiability to Satisfiability Modulo Theories

In this paper we present a review of SAT-based approaches for building scalable and efficient decision procedures for quantifier-free first-order logic formulas in one or more decidable theories, known as Satisfiability Modulo Theories (SMT) problems. As applied to different system verification problems, SMT problems comprise of different theories including fragments of elementary theory of num...

متن کامل

Satisfiability Modulo Recursive Programs

We present a semi-decision procedure for checking satisfiability of expressive correctness properties of recursive first-order functional programs. In our approach, both properties and programs are expressed in the same language, a subset of Scala. We implemented our procedure and integrated it with the Z3 SMT solver and the Scala compiler. Our procedure is sound for counterexamples and for pro...

متن کامل

Lazy Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some decidable first-order theory T (SMT (T )). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-37703-7_8